Wafer-Scale Production of Uniform InAs$_y$P$_{1-y}$ Nanowire Array on Silicon for Heterogeneous Integration

Jae Cheol Shin,1 Ari Lee,7 Parsian Katal Mohseni,6 Do Yang Kim,5,6 Lan Yu,7 Jae Hun Kim,6 Hyo Jin Kim,† Won Jun Choi,5 Daniel Wasserman,4 Kyoung Jin Choi,1,6,* and Xiuling Li‡,*

1Korea Photonics Technology Institute, Gwangju 500-779, South Korea, 2Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, United States, 3Korea Institute of Science and Technology, Seoul 136-791, South Korea, 4School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan 689-798, South Korea, and 5KIST-UNIST Ulsan Center for Convergent Materials (KUUC), Ulsan 689-798, South Korea

ABSTRACT One-dimensional crystal growth allows the epitaxial integration of compound semiconductors on silicon (Si), as the large lattice-mismatch strain arising from heterointerfaces can be laterally relieved. Here, we report the direct heteroepitaxial growth of a mixed anion ternary InAs$_y$P$_{1-y}$ nanowire array across an entire 2 in. Si wafer with unprecedented spatial, structural, and special uniformity across the entire 2 in. wafer and dramatic improvements in aspect ratio (>100) and area density (>5 × 10⁸/cm²). Heterojunction solar cells consisting of n-type InAs$_y$P$_{1-y}$ (y = 0.75) and p-type Si achieve a conversion efficiency of 3.6% under air mass 1.5 illumination. This work demonstrates the potential for large-scale production of these nanowires for heterogeneous integration of optoelectronic devices.

KEYWORDS: MOCVD · InAs$_y$P$_{1-y}$ · nanowire · III–V semiconductor · heterojunction

High-aspect-ratio semiconductors have led to significant breakthroughs in conventional electrical, optical, and energy-harvesting devices.1–4 Among such structures, III–V semiconductor nanowires offer unique properties arising from their high electron mobility and absorption coefficients, as well as their direct band gaps.5–8 Moreover, III–V semiconductors can tune their band-gap energy by formation of ternary or quaternary alloys.9 For example, In$_x$Ga$_{1-x}$As or In$_x$As$_{1-y}$P$_y$ can cover a band-gap energy range of over 1 eV (i.e., 0.35–1.4 eV), allowing for enormous improvement in the performance of optoelectronic devices by formation of heterojunctions (e.g., quantum well lasers and tandem solar cells). The vapor–liquid–solid (VLS) method, which facilitates one-dimensional (1-D) crystal growth of semiconductors using metal catalysts, has been widely used to synthesize III–V semiconductor nanowires.10,11 However, metal-induced contamination presents a serious concern because metal atoms from the catalyst can create deep trap levels in the semiconductor band gap, which degrade the device performance.12–14 Furthermore, ternary nanowires grown using metal catalysts suffer from a large gradient of alloy compositions along the nanowire length.9,15–17 Even self-catalyzed (i.e., gallium (Ga)-assisted) ternary nanowires present a large composition gradient, as observed by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) analyses.18 Selective-area epitaxy (SAE) is another well-known method for the growth of III–V semiconductor nanowires.1,19,20 For the SAE approach, nanosized hole patterns are fabricated via electron (e)-beam lithography, which is very time-consuming and thus limits pattern area.6 Novel patterning methods, including nanosphere lithography21,22 and diblock copolymer lithography,23 have shown promise for producing wafer-scale high-density growth of III–V quantum dots. Note that Si is the most universal platform for the electronics industry; therefore epitaxial integration of III–V on Si provides an active optic system with CMOS technology.24,25 Catalyst-free, self-assembled growth of ternary In$_x$Ga$_{1-x}$As nanowires has recently been demonstrated on Si substrates.26 The lattice-mismatch strain between Si and In$_x$Ga$_{1-x}$As allows 1-D crystal growth on Si without pattern assistance.

Received for review March 26, 2013 and accepted May 7, 2013.

Published online May 07, 2013 10.1021/nn4014774

© 2013 American Chemical Society
However, the nanowire geometry (i.e., diameter, height, and density) varies significantly across the wafer. Furthermore, phase segregation of group III [i.e., indium (In) and Ga] occurs in the nanowire and thus results in a curved shape and a broad photoluminescence (PL) spectrum due to the inhomogeneous strain and large composition distribution, respectively.26

In this article, we report the heteroepitaxial growth of ternary InAs$_{y}$P$_{1-y}$ nanowire arrays on Si using metal–organic chemical vapor deposition (MOCVD). The nanowires are uniformly grown across entire 2-in. Si(111) substrates, and their aspect ratios exceed 100 without the use of metal catalysts or pattern assistance. X-ray diffraction and PL spectra of the InAs$_{y}$P$_{1-y}$ nanowire arrays exhibit a very narrow full-width at half-maximum (fwhm), indicating strong homogeneity of both individual NWs, as well as the NW array, across the entire wafer. Heterojunction solar cells composed of n-type InAs$_{y}$P$_{1-y}$ and p-type Si are fabricated and measured. The conversion efficiency of the heterojunction solar cells further increases via in situ growth of n$^+$-InP shells. These ternary III–V semiconductor nanowires on Si have potential applications for a diverse array of semiconductor devices, such as monolithic tandem solar cells,27,28 high-performance transistors,1 quantum information devices,29 and light-emitting diodes.6

RESULTS AND DISCUSSION

An optical image of the InAs$_{y}$P$_{1-y}$ (y \approx 0.75) nanowire array grown on a 2 in. Si wafer is shown in Figure 1a. Fairly uniform diffraction color on the surface implies that the variations in height, diameter, and number density of the nanowires are small. Scanning electron microscope (SEM) images in Figure 1b and c show that the nanowires are grown vertically on the Si(111) substrate without any sign of bending. For the growth of the nanowires, an oxide-free Si wafer was dipped in poly-L-lysine (PLL) solution for 2 min and rinsed. Then, the Si wafer was promptly loaded into the MOCVD reactor. After the temperature was stabilized

Figure 1. Optical and SEM images of the InAs$_{y}$P$_{1-y}$ nanowire array. (a) Optical image of the InAs$_{y}$P$_{1-y}$ (y \approx 0.75) nanowires grown on a 2 in. Si(111) wafer. (b) 45° tilted SEM image showing that the nanowires are vertically grown on the substrate. Inset is a top-view SEM image over an area of 4 μm2, from which the number density of the nanowire array is estimated to be 5.5 \times 109/cm2. (c) Side-view SEM image showing that the average height of the nanowire array is 14 μm. (d, e) Number density (d) and diameter distribution (e) of the nanowire array at three different positions marked in a, demonstrating the high uniformity. Number density in d is on a log scale.
at 610 °C under H₂ ambience, AsH₃ first flowed into the reactor for 1 min, and then PH₃ and TMIn were added for the nanowire growth. The detailed growth procedure can be found in the Experimental Procedures section. Self-assembled growth of In(Ga)As nanowires on Si has been previously reported.²⁶,³⁰,³¹ In a lattice-mismatched system (e.g., InAs/Si), the strain energy at the heterointerface is usually relieved by means of island formation.³² In these islands, crystallization occurs mostly in the (111) direction,³³ because lateral growth is not energetically favorable since the interface is elastic. As is known, the condition to form islands without a wetting layer (Volmer–Weber mode) in heteroepitaxy can be expressed by γₛ < γₐ + γₑ where γₛ, γₐ, and γₑ are substrate surface energy, interface energy, and adlayer surface energy, respectively.³² This indicates that an increase of interface energy γₑ due to increased lattice mismatch can promote the formation of islands, thus facilitating growth of nanowires; however if γₑ is too large, nucleation would be difficult. A short immersion in poly-L-lysine forms a thin polyelectrolyte layer on the Si surface, resulting in a positively charged surface.³⁴ PLL solution has been used for the growth of Au-catalyzed nanowires because the positively charged surface attracts negatively charged Au nanoparticles and prevents the Au nanoparticles from clumping.⁹,³⁵ Similarly, we believe that the electrostatic interaction between the positively charged Si surface and negatively charged arsenic (As) should promote better adhesion and subsequent reaction with the Si surface. An attempt to flow TMIn prior to AsH₃ significantly decreases the number density and coverage of the nanowires, implying that positively charged In species inhibit nucleation. Crystal growth of InAs nanowires using self-assembled organic coating (i.e., allyl alcohol) has been reported by the Samuelson group.³⁶ However, the organic-coated template in their case needed to be exposed in air for several hours. It was assumed that the complementary oxide pattern formed acted as a growth inhibition mask, while the organics were burned in growth to expose clean Si for selective area epitaxy.³⁶ In contrast, an increase of ambient exposure time after PLL treatment results in a decrease of number density and growth area of the nanowires in our case. Furthermore, the base diameter of the nanowire can be tuned from 30 to 300 nm with growth parameters, indicating the nanowire is not grown via organic-templated hole pattern. Note that PLL treatment could potentially cause contaminations during growth since it was reported that the presence of lysine was found on InP surfaces even after initial annealing at 600 °C although removed after prolonged annealing.³⁷ However, the morphological effect of PLL is certain. For comparison, InAs nanowires were grown on Si(111) substrates with and without PLL treatment (Figure S1 of the Supporting Information). Clearly, the uniformity, density, and growth area are dramatically improved with PLL treatment. Furthermore, ternary InAs₁₋₀.₅₇ nanowires do not grow at all on Si without PLL treatment. Figure 1d and e are the number density and diameter of the nanowires measured at three different positions on the PLL-treated wafer (i.e., A, B, and C shown in Figure 1a). The nanowire density varies from 3.5 × 10⁸/cm² to 5.5 × 10⁸/cm² across the wafer. The average diameter of the nanowire array is 98 nm, and the variation of the diameter is ±40 nm. The average height of the nanowires is 14 μm for 40 min growth, and the variation is less than 2 μm over the entire Si wafer. These distribution statistics across an entire 2 in wafer confirm wafer-scale uniformity of this growth method.

To understand the structural properties of the In₃_p₋₁₋₅ nanowires, electron microscopy analyses have been performed (Figure 2). A high-resolution transmission electron microscopy (HR-TEM) image taken near the middle of the nanowire in height is shown in Figure 2a. The nanowire possesses a zinc-blende (ZB) crystal structure with a high density of stacking faults or twining along the growth direction, very similar to other demonstrations of nanowires grown via catalyst-free methods.¹,²⁶,³⁰ The existence of stacking faults is also supported by the presence of streaks along the (111) direction of the selected area electron diffraction (SAED) pattern shown in Figure 2d (A). Shown in Figure 2b is a high-angle annular dark-field (HAADF) scanning (STEM) image, which is highly sensitive to variations in the atomic number of the atoms. Remarkably, phase separation of ternary elements, which is occasionally shown in ternary nanowires grown on Si,²⁶,³⁹ is not observed. Note that the increase of contrast toward the center of the nanowire is attributed to thickness contrast. Shown in Figure 2c is a cross-sectional TEM image taken at the interface between Si and In₃_p₋₁₋₅. The heterojunction is atomically abrupt and free from antiphase domains or threading dislocations even though the existence of sporadic misfit dislocations is observed, as indicated by arrows. Shown in Figure 2d (B), (C), and (D) are SAED patterns that are taken at the positions marked by (B), (C), and (D) in Figure 2c, respectively. Spot splitting shown in Figure 2d (C) is evidence of diffraction from both Si and In₃_p₋₁₋₅ planes at the heterointerface. Moreover, clear spots of SAED patterns without a streaky line indicate that the In₃_p₋₁₋₅ nanowire is single-crystal ZB crystal structure, and more importantly, no stacking faults or twin defects are observed near the heterojunction.¹,¹⁹,³³ This indicates that the stacking faults in the crystal arise after island formation on Si, implying that an optimized growth condition may allow the formation of single-crystal ZB structure along the entire nanowire length. The twinning in Figure 2a appears to be almost periodic, which is observed in many parts of the nanowire. This may be an indication of a cyclic crystal assembly regime and further supports the supposition that stacking-fault-free growth can be achieved under certain growth
conditions. Cross-sectional TEM images and SAED patterns have been taken at several more places, confirming that the nanowire forms a single-crystal structure near the heterointerface (Figure S2 of the Supporting Information).

Tuning alloy composition of the ternary nanowires is imperative for a number of potential applications. Shown in Figure 3a is the PL spectrum measured at 77 K for the \(\text{InAs}_y\text{P}_{1-y} \) nanowire array with and without an \textit{in situ} grown InP shell. The peak position is located at 0.62 eV, corresponding to an As composition \(y \) of 0.75, based on the equation given by Antypas and Yep\(^40\) as
\[
E_g = \frac{1.416 - 1.276y + 0.281y^2}{1.276y + 0.281y^2}.
\]
Importantly, the fwhm of the PL peak is 51 meV, which is comparable to that of the narrowest peaks reported for ternary III-V nanowires grown via the SAE method.\(^41\) The InP passivation layer has a higher band-gap energy than the \(\text{InAs}_y\text{P}_{1-y} \) core and can reduce surface recombination. Without the InP passivation, the PL signal was \(\sim 50 \) times weaker. The importance of passivation for device applications will be discussed later. The alloy composition of the \(\text{InAs}_y\text{P}_{1-y} \) nanowires is further examined by the HR-XRD spectrum, as seen in Figure 3b. A Si(111) substrate peak is located at 28.4° in 2 theta scale, and the peak at 25.6° corresponds to the ZB form of \(\text{InAs}_{0.75}\text{P}_{0.25} \), which is deduced from the lattice constants of InAs and InP using Vegard’s law. To investigate the compositional gradient, EDX has been performed along the nanowire length, as shown in Figure 3c. The As composition, \(y \), calculated from atomic counts of EDX is 0.74 ± 0.04 over the entire nanowire length. Importantly, no significant variation of the alloy composition is observed along the nanowire height. We do not expect much composition variation in the radial direction either, although no radial EXA analysis was performed. This is because the self-assembled growth in this work occurs only via the vapor–solid (VS) growth mode,\(^33\) in contrast to the metal-catalyzed vertical nanowires, where alloy composition could exhibit a distribution\(^42\) due to the coexistence of VLS and VS growth modes.\(^17,42\) The arrow XRD and PL peaks further support that the nanowires have uniform alloy composition across the nanowires. In addition, the absence of bending in the nanowire morphology as seen in the inset of Figure 3c indirectly confirms that the alloy composition is uniformly distributed across the nanowires. Otherwise, uneven strain is applied along the nanowire, resulting in a
EPITAXIAL InAs nanowires inherently possess good optical properties, such as high absorbance in the visible range and high PL quantum yield. The alloy composition of the InAs0.75P0.25 nanowires is determined by the gas phase composition of the precursor gas mixture used in the MOCVD process. The InAs0.75P0.25 nanowires were grown on a Si(111) substrate using a gas phase composition of 5:1 In:As and 20:1 As:Pi, resulting in a calculated As composition of 0.74, which is in good agreement with the PL and XRD results.

The linear intensity scale of each XRD spectrum is shown in Figure 3c. The peak from InAs0.75P0.25 is located at 25.6°, along with the substrate peak to the right on a log intensity scale. The EDX data in Figure 3c show that the As composition of the nanowires is 0.74 ± 0.04, indicating the successful formation of InAs0.75P0.25 nanowires.

Figure 3. Characteristics of alloy composition of the InAs0.75P0.25 nanowires. (a) Low-temperature PL spectra of the InAs0.75P0.25 nanowires before and after InP passivation. (b) XRD spectrum of the InAs0.75P0.25 nanowires on the Si(111) substrate. The peak from InAs0.75P0.25 is located at 25.6° along with the substrate peak to the right on a log intensity scale. (c) EDX line profiles of the InAs0.75P0.25 nanowire. Inset is the TEM image of the nanowire, showing the points where EDX is performed. (d) XRD spectra of the InAs0.75P0.25 nanowire array before and after InP passivation. (b) XRD spectrum of the InAs0.75P0.25 nanowires on the Si(111) substrate. The peak from InAs0.75P0.25 is located at 25.6° along with the substrate peak to the right on a log intensity scale. (c) EDX line profiles of the InAs0.75P0.25 nanowire. Inset is the TEM image of the nanowire, showing the points where EDX is performed. (d) XRD spectra of the InAs0.75P0.25 nanowire array before and after InP passivation. (b) XRD spectrum of the InAs0.75P0.25 nanowires on the Si(111) substrate. The peak from InAs0.75P0.25 is located at 25.6° along with the substrate peak to the right on a log intensity scale. (c) EDX line profiles of the InAs0.75P0.25 nanowire. Inset is the TEM image of the nanowire, showing the points where EDX is performed. (d) XRD spectra of the InAs0.75P0.25 nanowire array before and after InP passivation.

While surface recombination affects most semiconductor optoelectronic devices, nanowire-based devices are especially susceptible to surface recombination of photogenerated carriers due to their large surface-to-volume ratio.53–56 Figure 5 shows energy band diagrams of the n-InAs0.75P0.25 core (a) and n-InAs0.75P0.25/n-InP core/shell (b) structures. In the core nanowire, there is a high density of surface states along the surface of InAs0.75P0.25, which act as efficient recombination centers for photoexcited electrons and holes, thus reducing the overall short-circuit current of the solar cells. In the InAs0.75P0.25/n-InP core/shell (b) structure, however, electron–hole recombination through surface states on the surface of InP is significantly reduced due to the spatial curvature in shape.56 Tuning alloy composition of the InAs0.75P0.25 nanowires, we can achieve by changing the molar ratio of group V during growth, as seen in Figure 3d. The relationship between the alloy composition of the InAs0.75P0.25 in the solid state and the molar ratio of the gas phase group V precursors is shown in Table S1 of the Supporting Information. Although we report here a range of only x = 1–0.75 (y = 0–0.25) due to the limitations of the mass flow controllers on our MOCVD system, we believe a much wider range of uniform, structurally and compositionally homogeneous, and high-aspect-ratio InAs0.75P0.25 nanowires can be formed on Si.

Epitaxially grown III–V nanowires on Si have been fabricated into diverse electrical and optical devices such as light-emitting diodes, field-effect transistors, and high-sensitivity photodetectors. Furthermore, heterojunctions can be applicable to the multijunction solar cells or Esaki diodes. To investigate the electrical properties of the epitaxial interface, heterojunction solar cells composed of n-type InAs0.75P0.25 nanowires and p-type Si have been fabricated as seen in Figure 4a. Note that there is no parasitic film grown between the nanowires inherent to the growth mechanism;30 thus p/n junctions form only between the nanowires and Si substrate. The dark I–V curve (Figure 4b) is measured at room temperature, and the current density (J) is plotted on log scale. The rectifying ratio and ideality factor calculated from I–V measurements are compared to those of the heterojunction (i.e., III–V nanowire on Si), the homojunction (i.e., III–V nanowires on III–V substrates, Si nanowires on Si substrates), and 2-D heterojunctions of III–V and Si formed via wafer bonding techniques, as seen in Figure 4c. A large rectification ratio of ~105 at ±0.5 V and a low reverse leakage current density (e.g., 2 × 10–6 mA/cm2 at –0.5 V) imply that the heterojunction is type II, in which the conduction and valence bands of the p-Si are higher than those of n-InAs0.75P0.25.51 Even though the rectifying ratio of the diode varies with the amount of doping, a relatively large rectifying ratio is achieved compared to those of nanowire-based diodes. More importantly, the ideality factor extracted from a linear portion of the ln(J)–V plot is 1.4, which is better than those of the III–V on Si formed via the SAE method54 or wafer bonding technique.50,51 Remarkably, the ideality factor of our InAs0.75P0.25 nanowire on Si is comparable to those of the state-of-the-art homojunction nanowires.

While surface recombination affects most semiconductor optoelectronic devices, nanowire-based devices are especially susceptible to surface recombination of photogenerated carriers due to their large surface-to-volume ratio.53–56 Figure 5 shows energy band diagrams of the n-InAs0.75P0.25 core (a) and n-InAs0.75P0.25/n-InP core/shell (b) structures. In the core nanowire, there is a high density of surface states along the surface of InAs0.75P0.25, which act as efficient recombination centers for photoexcited electrons and holes, thus reducing the overall short-circuit current of the solar cells. In the InAs0.75P0.25/n-InP core/shell (b) structure, however, electron–hole recombination through surface states on the surface of InP is significantly reduced due to the spatial...
separation between charge carriers and surface states, which increases short-circuit current. It is obvious that there is an optimal thickness of the InP shell layer when considering light absorption and surface passivation effects. In other words, a thicker shell might reduce electron–hole recombination, but the light absorption

Figure 4. Electrical characterization of the heterojunction solar cells composed of an n-InAs\(_{0.7}P_{0.3}\) nanowire array on a p-Si\((111)\) substrate. (a) Cross-sectional SEM image of the solar cells showing that the tips of the nanowire array contact a TCO. Inset is an optical image of the fabricated device, showing the active area of 0.09 cm\(^2\). (b) Dark \(J–V\) characteristics at room temperature. (c) Ideality factor and rectifying ratio compared to those of the diverse semiconductor junction (i.e., III–V nanowires on Si, III–V nanowire on III–V, Si nanowire on Si, and III–V film on Si via wafer bonding technique).

Figure 5. Characterization of the heterojunction solar cells. (a, b) Band diagram of the InAs\(_x\)P\(_{1-x}\) nanowire without (a) and with (b) an InP shell. Defect states along the surface of the nanowire act as efficient recombination centers for photogenerated carriers. Core–shell structure can spatially separate the carriers from the surface, thus reducing surface recombination. (c, d) 1 sun \(J–V\) curve for the n-InAs\(_{0.75}P_{0.25}\) nanowire/p-Si solar cells without (c) and with (d) an n+-InP passivation layer.
EXPERIMENTAL PROCEDURES

Metal–organic chemical vapor deposition (AIXTRON A200) was used for the growth of InAs$_{0.75}$P$_{0.25}$/p-Si. The 2-inch Si (111) wafer was cleaned with buffered oxide etch (1 min) and denitized (DI) water (2 s). Then, the wafer was immediately dipped in poly-lysine solution (Sigma-Aldrich Inc.) for 3 min and then rinsed in DI water for 10 s. The Si substrate was then loaded into the MOCVD reactor without any delay. The reactor pressure was lowered to 50 mbar with 15 L/min of hydrogen gas flow. Then, the reactor was heated to growth temperatures (570–630 °C) and stabilized for 10 min. Arsine (AsH$_3$) gas first ran into the reactor for 1 min; then trimethylindium (TMIn) and phosphine (PH$_3$) gas flowed into the reactor. The molar flow (mol/min) of TMIn and AsH$_3$ was 2 × 10$^{-3}$ and 2.2 × 10$^{-5}$, respectively. To control the composition of the InAs$_{0.75}$P$_{0.25}$ nanowires, the molar flow of PH$_3$ was changed in the range from 4.5 × 10$^{-3}$ to 8.4 × 10$^{-2}$ mol/min. For the growth of the InP shell on the InAsP nanowire surface, the growth temperature was increased to 650 °C under mixed group V flows (AsH$_3$ and PH$_3$). After the temperature was stabilized, the AsH$_3$ flow was stopped and the TMIn run valve was opened, simultaneously. Disilane (Si$_2$H$_6$, 0.02% in H$_2$) was introduced to achieve n-type InAs$_{0.75}$P$_{0.25}$ nanowires (4 × 10$^{-9}$ mol/min) and an n-InP shell layer (2 × 10$^{-8}$ mol/min). These flows correspond to doping concentrations of mid-1017 and low-1018 cm$^{-3}$ for planar InP film, respectively.

The morphologies of InAs$_{0.75}$P$_{0.25}$/p-Si nanowires were investigated by scanning electron microscopy (Hitachi-S4700). The Phillips X’pert system (PAAnalytical Inc.) was used for the high-resolution XRD spectra. Structural properties of the nanowires were examined by TEM (Titan 80-300, FEI Inc.) focused ion beam imaging was performed for the cross-sectional TEM images. The atomic counts along the nanowire heights were measured using EDX equipped in the TEM machine. The X-ray spot size for the EDX was ∼0.1 nm. Photoluminescence was measured by amplitude modulation step-scan Fourier transform infrared (FTIR) spectroscopy on a Bruker V80 V system. Excitation was provided by a 980 nm diode laser with 100 mW power. The incident light was modulated by a beam chopper, and the emission from the sample was collected through a ZnSe window and collimated by a Ge lens, which blocked the exciting laser from entering the FTIR. The PL spectrum was detected by a HgCdTe (MCT) detector and then sent to a lock-in amplifier. The dc output of the lock-in amplifier was then returned to the FTIR. Step-scan modulation can improve the signal-to-noise ratio significantly since it removes all background noise by modulating the detector signal and the exciting source at the same frequency. The short-circuit current (J_s) and open-circuit voltage (V_{oc}) of the solar cells were measured using an AM 1.5 solar simulator (100 mW/cm2). Short-circuit current density (J_s) and energy-conversion efficiency (η) values were calculated using the top planar area of the solar cell, excluding the metal contact area. For solar cells, a p-type Si wafer (1−10 Ω-cm) was prepared and the boron was thermally diffused on the backside to form a p$^+$ contact. After growth of the InAs$_{0.75}$P$_{0.25}$/p-Si nanowire array, BCB (Cyclotene 3022-35, Dow Inc.) was spin-coated at 3000 rpm on the nanowire side; then the sample was annealed for 2 h at 300 °C. Because the nanowires are very long (>10 μm) and thin (~100 nm), small portions of the nanowires (<10%) are broken during the BCB-filling process. The Cyclotene was etched with CH$_4$/O$_2$ gases using a reactive ion etching system until the tips of the nanowires were slightly exposed. ZnO (700 nm thick) was deposited on the side where the nanowire tips were exposed, followed by gold electrodes (Ti: 10 nm/Au: 200 nm) on top of the ZnO pad. Ti/Au (10 nm/200 nm) was then deposited on the Si surface for the back metal contact. The fabricated device can be seen in Figure 4.

CONCLUSIONS

In summary, we have demonstrated a novel method to epitaxially synthesize structurally and compositionally homogeneous and spatially uniform ternary InAs$_{1-y}$P$_y$ nanowires on Si at wafer-scale. The high quality of the nanowires is reflected in the remarkably narrow PL and X-ray peak width and extremely low ideality factor in the InAs$_{1-y}$P$_y$ nanowire/Si diode. The conversion efficiency of heterojunction solar cells composed of InAs$_{1-y}$P$_y$ nanowires and p-Si is significantly enhanced through in situ passivation with an n$^-$InP nanowire shell, indicating the importance of surface passivation for the nanostructured semiconductor devices. Large-scale, heteroepitaxial growth of III–V nanowires on Si substrate could lead to other high-performance and low-cost device applications on Si.

REFERENCES AND NOTES

